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Abstract

Irradiation-induced segregation mechanisms are classified into solute–point-defect complex type and inverse Kirkendall
type. For solutes that have a strong interaction with interstitials in a dilute alloy, the complex effect plays an important part
in the segregation. Our earlier model describing solute grain boundary segregation during neutron irradiation in dilute binary
alloys, based on the complex effect mechanism, is modified by considering the irradiation-enhanced solute diffusion and the
long-range recombination effect of freely migrating point-defects, and expanded to evaluate solute segregation in dilute
ternary alloys through consideration of solute–solute competition for segregation sites. Applications of the model to
predictions of P grain boundary segregation in neutron irradiated a-Fe and Fe–B–P and Fe–C–P alloys indicate that the
model has reasonable validity. q 1998 Elsevier Science B.V. All rights reserved.

1. Introduction

Irradiation-induced segregation mechanisms can be described by inverse Kirkendall models or solute–point-defect
w xcomplex models 1–3 . The Kirkendall effects are based on the concept that components in a diffusion couple diffuse via

vacancies at different rates so that a composition gradient may induce a net flux of vacancies across a lattice plane, even if
the vacancy distribution is initially uniform. During neutron irradiation, the inverse situation exists near sinks such as grain
boundaries and free surfaces where gradients in the vacancy and interstitial concentrations may result in a net flux of solute
and solvent atoms across the lattice plane. In multicomponent systems, relative diffusion rates of various components
determine their enrichment or depletion at the sinks.

If a solute has a strong interaction with point-defects, the solute–point-defect complex effects need to be taken into
consideration. The complex effects are based on the following considerations. Solute atoms, point-defects, and their
complexes are in equilibrium with each other at a given temperature. Neutron irradiation produces cascades of point-defects,
leading to the formation of Frenkel pairs, and as a result the point-defect concentration exceeds the thermal equilibrium
concentration in the matrix. However, at sinks such as grain boundaries and free surfaces the point-defect concentration
approaches the thermal equilibrium concentration. This decrease in point-defect concentration results in the dissociation of
the complexes, which, in turn, leads to a decrease in the concentration of the complexes and an increase in the concentration
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of individual solute atoms in the proximity of sinks. In regions away from the sinks, the steady state concentration of the
complexes remains, giving rise to a complex concentration gradient between the sink and the adjacent matrix. The
concentration gradient of complexes causes their migration leading to an excess solute concentration in the vicinity of sinks.
It is evident that the larger the supersaturation level of point-defects induced by neutron irradiation, the larger is the potential
segregation of solute atoms to the sinks.

In general, the contribution of solute–point-defect complexes to solute segregation depends on their binding and
migration energies. The complex mechanism during irradiation is expected to be especially important to solute migration in

w x w x Ž .dilute alloys by means of interstitial–solute complexes 1,4 . This is because 4–7 1 the migration of solute–interstitial
Ž .complexes is easier than that of solute–vacancy complexes and 2 the interaction of the undersized solute with the

interstitial is much stronger than that with the vacancy. As a consequence, it is clear that, for solutes which have strong
interactions with interstitials, for example, phosphorus and silicon in steels and nickel alloys, the diffusion of solute–intersti-

w xtial complexes should be dominant in neutron irradiation-induced segregation. However, as discussed in Ref. 1 , in the
absence of solute–interstitial interactions, solute segregation to sinks may occur via solute–vacancy complexes if the
solute–vacancy binding energy is high enough even though the migration of solute–vacancy complexes is quite slow as
compared to that of solute–interstitial complexes. Therefore, in order to clearly demonstrate whether the solute–interstitial
complex effects or the solute–vacancy complex effects dominate during neutron irradiation-induced segregation, it is
necessary to make predictions assuming the presence of each defect type separately.

w xRecently, we 3 have developed a model describing solute segregation under neutron irradiation in dilute binary alloys
on the basis of the complex mechanism. In the model, both irradiation-enhanced solute diffusion and solute–interstitial
complex effects are considered. To determine whether the solute–interstitial or solute–vacancy complexes play a dominant
role in neutron irradiation-induced segregation, predictions of phosphorus grain boundary segregation in neutron irradiated

w xa-Fe have been made by means of our model 3 with modifications to include the irradiation-enhanced solute diffusion
theory and the long-range recombination effect of freely migrating vacancies and interstitials generated from the cascades.
Predictions have also been made of solute segregation in dilute ternary Fe–B–P and Fe–C–P alloys through consideration of
solute–solute competition for segregation sites on the grain boundary.

2. Theoretical models

In this section, we develop various non-equilibrium and equilibrium segregation models that are appropriate to solute or
impurity segregation in simple binary alloys and more complex ternary alloys. In the latter, the issue of site competition is
addressed. Moreover, we consider the input parameters that are required to support the modelling.

2.1. Irradiation-induced non-equilibrium segregation

w xAn irradiation-induced grain boundary segregation model established in our previous work 3 is utilised to describe the
process. The model originally predicted the maximum amount of segregation expected in a dilute binary alloy on the basis of
a thermodynamic argument using the equilibrium concentration of point-defects expected at grain boundaries ratioed to the
non-equilibrium concentration expected within grains induced during neutron irradiation. The maximum concentration of

m w xirradiation-induced non-equilibrium segregation of solute or impurity atoms, C , is given by 3br

ip pE BG Eb fmC sC 1q exp , 1Ž .br g p 2 ž /E kTA D kf p p dp

where C is the solute concentration in the matrix; p stands for the point-defect, either the vacancy, v, or the interstitial I; Dg p

is the diffusion coefficient of point-defects in the matrix; E ip is the solute–point-defect binding energy; Ep is theb f

point-defect formation energy; A is a constant associated with the vibrational entropy of atoms around the point-defect; Gp
Ž .is the point-defect production rate or neutron dose rate ; k is Boltzmann’s constant; T is the absolute temperature; B is the

dose rate correction factor, i.e., the fraction of freely migrating point-defects escaping from the cascade; and k 2 is the sinkdp

strength for point-defects. There are two sink strengths, one of which, k 2 , is for interstitials and the other, k 2 , fordI dv
w xvacancies, and they are given by 2

6
2k s Z r q Z r 2a' ' Ž .dI I Iž /R
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and

6
2 ' 'k s r q r , 2bŽ .dv ž /R

where Z is the bias parameter defining the preferential interaction between interstitials and dislocations compared with thatI
w xbetween vacancies and dislocations; R is the grain size; and r is the dislocation density, given by 3

Ed
rsr exp 3Ž .o ž /kT

where r is the dislocation density constant which depends on the pre-irradiation dislocation density, the dose rate, etc., ando

E is the activation energy for dislocation recovery processes.d
m Ž .It is evident that the maximum grain boundary segregation concentration, C , given by Eq. 1 is mainly dependent onbr

the irradiation temperature and is independent of the irradiation time. In this important thermodynamic relationship, the
effective dose rate term does not take account of long-range recombination of point-defects. As one improvement on our

w xprevious model 3 , we now use the following method to evaluate the long-range recombination effects of freely migrating
vacancies and interstitials outside the cascade.

w xDuring steady-state irradiation, the defect production rate, G, is described by the following equations 8 :

BGslC r C rqk 2 D C r 4aŽ .v I dv v v

BGslC r C rqk 2 D C r 4bŽ .v I dI I I

where B is the dose rate correction factor; l is the long-range recombination coefficient of freely migrating point-defects
outside the cascade; C r and C r are the irradiation-generated interstitial and vacancy concentrations, respectively; D and DI v I v

Ž . Ž .are the diffusion coefficients of interstitials and vacancies, respectively. From Eqs. 4a and 4b , one may obtain the
Ž . rconcentration of irradiation-created point-defects vacancies or interstitials , C , asp

BGF hŽ .
rC s 5Ž .p 2D kp dp

where

2 1r2F h s 1qh y1 6Ž . Ž . Ž .
h

and

4lBG
hs 7Ž .2 2k k D Ddv dI v I

w xwhere the long-range recombination coefficient of freely migrating point-defects, l, is given by 9

21DI
ls 8Ž .2b

where b is the jump distance of interstitials.
Ž .With provision for the long-range recombination of freely migrating point-defects, Eq. 1 can be changed into

ip pE BGF h EŽ .b fmC sC 1q exp 9Ž .br g p 2 ž /E kTA D kf p p dp

As the thickness of the boundary region is very small as compared with the grain size, in which the concentration gradient
may be neglected, the diffusion of the complexes towards the grain boundary may be simplified into a steady linear flow of
the complexes into the grain boundary in a semi-infinite medium. One may envisage, for convenience, an interface between

Ž . Ž .grain boundary and interior located exactly at xs0 where the solute concentration, C, is CsC t ra where C t is thebr br

solute concentration at the concentrated layer when irradiation time is equal to t, and changes with irradiation time at a given
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irradiation temperature, and asC mrC . In terms of the Fick’s law and the Principle of Mass Conservation, the kinetics ofbr g
w xirradiation-induced segregation may be obtained as 3

iPiP (2 D tC t yC 4D tŽ . cbr g c
s1yexp erfc 10Ž .m 2 2ž / ž /C yC a da dbr g nn

Ž .where C t is the boundary concentration of the solute at irradiation times t, C is the solute concentration in the matrix,br g
iP Ž .D is the diffusion coefficient of solute–point-defect vacancy, v, or interstitial, I complexes, d is the boundary thickness,c

and a is the maximum non-equilibrium enrichment ratio, given by a sC mrC .n n br g
Ž .Eq. 10 is an isothermal kinetic relationship for irradiation-induced grain boundary segregation. It describes the grain

boundary segregation level as a function of irradiation time at a given irradiation temperature.
The above model is only suitable for dilute binary alloys. We now expand this model to predict the irradiation-induced

non-equilibrium segregation of solute atoms in dilute ternary alloys through consideration of solute–solute competition for
segregation sites.

Solutes 1 and 2 in a dilute ternary alloy are here assumed to compete with each other for segregation sites at the grain
boundary. The site competition between these two solutes will be dealt with by the following method. By the complex
mechanism described above the solutes first segregate to the grain boundary independently to obtain segregation levels CS1

br
S2 Žand C , and then re-distribute there in proportion to their binding energies with the grain boundary equilibrium segregationbr
.energies . The competition effect may be evaluated by

QS1S1C expg ž /kTS1) S1C sC 11aŽ .br br Q QS1 S2S1 S2C exp qC expg gž / ž /kT kT

QS2S2C expg ž /kTS2) S2C sC 11bŽ .br br Q QS1 S2S1 S2C exp qC expg gž / ž /kT kT

where CS1) and CS2) are the final levels of irradiation-induced grain boundary segregation for solutes 1 and 2,br br

respectively; Q and Q are the binding energies of the grain boundary with solutes 1 and 2, respectively; and CS1 andS1 S2 g

CS2 are the matrix concentrations of solutes 1 and 2, respectively.g

The above approach to describing the site competition between two solutes in ternary systems might be acceptable. Since
irradiation-induced non-equilibrium segregation is a kinetic process, the complexes leading to this segregation may diffuse
independently to the grain boundary. In a manner similar to equilibrium segregation, the two solutes, however, need to
re-distribute at the grain boundary in the light of their binding energies with the boundary. Of course, interference among the
complexes is likely to exist but at present this effect is difficult to evaluate.

Ž .Eq. 9 evaluating the maximum concentration of non-equilibrium segregation in binary alloys is used here to depict the
w xmaximum concentration in ternary alloys through the following considerations. As stated in Ref. 2 , the absolute

concentration of the complexes is proportional to the solute concentration and the exponential term containing the
solute–point-defect binding energy. As a result, in order to evaluate the effect of site competition between two solutes on the
maximum concentration of irradiation-induced non-equilibrium segregation, the modified absolute concentrations of

Ž .complexes in the ternary situation may be included. Eq. 9 may thus be modified into

ipEbŽS j.S jC expip pg ž /E BGF h EŽ .kTbŽS j. fm S jC sC 1q exp , js1,2 12Ž .brŽS j. g p 2ip ž /E kTA D kEf p p dpbŽS j.S jC expÝ g ž /kTj

where C m is the maximum concentration of irradiation-induced non-equilibrium segregation for solute j, E ip is thebrŽS j. bŽS j.
solute j-point-defect binding energy, and CS j is the matrix concentration of solute j.g

w xThe kinetics for irradiation-induced grain boundary segregation are given by 3

ipS j S j ip 2 D t(C t yC 4D tŽ . cŽS j.br g c ŽS j.
s1yexp erfc js1,2 13Ž .m S j 2 2ž / a dC yC a d ž /nŽS j.brŽS j. g nŽS j.
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S jŽ .where C t is the concentration of solute j at the concentrated layer as a function of irradiation time at a given irradiationbr

temperature, D ip is the diffusion coefficient of solute j-point-defect complexes, d is the thickness of the concentratedcŽS j.
layer, and a sC m rCS j.nŽS j. brŽS j. g

The time required for reaching the steady-state segregation during irradiation may be determined by a critical time
approach. At this critical time the net supply of solute atoms from the grain centres becomes exhausted. After this the
reverse flow of solute atoms created by the non-equilibrium segregation concentration gradient is equal to the forward flow

w xof the complexes. This concept has been used by Martin 10 to derive the steady-state analytical solution of the
w x w xJohnson–Lam rate theory model 11 . Details on the critical time may be seen in Ref. 12 . The critical time, t , is expressedc

w xas 2,3,12,13

D ip
c2dR ln ž /Di

t s , 14Ž .c ip4 D yDŽ .c i

Ž w x .where d is a numerical constant quoted by Faulkner 12 as 0.05 , R is the grain size, D is the diffusion coefficient ofi

solute atoms in the matrix. D is taken to be the irradiation-enhanced diffusion coefficient D ) for substitutional solutes ori i

the thermal diffusion coefficient DT for interstitial solutes.i
Ž . ipIt may be seen from Eq. 14 that if D -D , e.g., carbon in a-Fe, there will be no non-equilibrium segregation effects.c i

Ž .It should, however, be noted here that Eq. 14 is applicable only at higher temperatures, i.e., when the maximum
equilibrium segregation level is zero or at least very low. In practice, irradiation temperatures are usually lower than 6008C.
In this scenario, there is quite a high maximum equilibrium segregation level for alloying or impurity elements such as
carbon, boron and phosphorus in steels. During irradiation, there will be no net back-diffusion fluxes of solute atoms from
the grain boundary to the grain from which the solute atoms were transported until the maximum equilibrium segregation
level is reached. In other words, the solute atoms will stick to the grain boundary even though they should be moving away
from it. As a consequence, even if D ip-D there will still be non-equilibrium segregation effects before the maximumc i

equilibrium segregation level is attained. This situation will be considered in the calculations, i.e., the non-equilibrium
segregation will be calculated until the maximum equilibrium segregation level is reached when D ip-D .c i

In general, solute diffusion in a dilute alloy may be enhanced mainly by irradiation-created vacancies and little by
irradiation-created solute–interstitials. This is because the solute concentration in the dilute alloy is quite low and thus the
concentration of irradiation-created solute–interstitials is quite low as well and consequently the solute diffusion is little

w xaffected by these solute–interstitials. In our previous work 3 , we have described an approach to evaluating irradiation-en-
hanced solute diffusion. A new approach that has a clearer physical basis has been developed here.

w xFor diffusion of substitutional solute atoms in a crystal matrix, the diffusion coefficient, D , can be given by 14i

D suv p 15Ž .i v

where u is a material constant, v is the probability that a solute atom jumps into a vacant nearest-neighbour lattice site, and
p is the probability that any given nearest-neighbour lattice site is vacant. The p is approximately equal to the vacancyv v

Ž .concentration C fraction of vacant lattice sites .v

The v may be obtained by

Gm
vsn exp y , 16Ž .ž /kT

where n is the vibrational frequency of the solute atom and G is the free energy required for a solute atom to migrate fromm
Ž .a equilibrium position to another nearest one. G is a function of temperature. As a consequence, Eq. 15 can be rewrittenm

into

Gm
D sun C exp yi v ž /kT 17Ž .

sd T C ,Ž . v

Ž . Ž Ž . Ž ..where d T sun exp y G r kT .Under irradiation, the vacancy concentration, C , is given bym v

C sCe qC r . 18Ž .v v v
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Ž .As a result, Eq. 17 can be rewritten into

D)sd T Ce qC r , 19Ž . Ž .Ž .i v v

where D) is the irradiation-enhanced solute diffusion coefficient.i
) T Ž .In the absence of irradiation, D is equal to the thermal diffusion coefficient D . Consequently, d T is given byi i

d T sDTrCe . 20Ž . Ž .i v

Thus the irradiation-enhanced solute diffusion coefficient, D), can be acquired byi

Ce qC r
v v

) TD sD . 21Ž .i i gž /Cv

r Ž .The irradiation-generated vacancy concentration, C , is given by Eq. 5 and the thermal equilibrium vacancy concentration,v

Ce , is given byv

E v
feC sA exp y , 22Ž .v v ž /kT

where A is a constant correlated with the vibrational entropy of atoms around the vacancy and E v is the vacancyv f

formation energy.

2.2. Equilibrium segregation

w xMcLean 15 states that, for a solute atom with a binding energy to the lattice, Q, at any temperature, T , there will be an
Ž .increased concentration of that solute on boundaries or interfaces, C T . The driving force for this is the reduction of`

Ž .energy, Q, of the solute on placing it in a strain-free region at the grain boundary, C T , is given by`

bC exp QrkTŽ .g
C T s , 23Ž . Ž .` 1qbC exp QrkTŽ .g

where b is a constant characterising the vibrational entropy of the grain boundary region and k is Boltzmann’s constant.
w xMcLean 15 refined these ideas by accounting for time, realising correctly that the finite time is required to reach

equilibrium and this is controlled by the diffusivity of solute atoms in the matrix.
Ž . Ž .The equilibrium segregation kinetics during irradiation, C t , derived by means of Eq. 23 , are given bybq

2 D tC t yC 0 '4D tŽ . Ž . ibq b i
s1yexp erfc , 24Ž .2 2ž / ž /C T yC 0 a da dŽ . Ž .` b ee

Ž .where C 0 is the solute concentration at the grain boundary at irradiation times0, i.e., the segregation level during theb

pre-irradiation heat-treatment of the material that was assumed in this work to be C unless specified and a is theg e
Ž .maximum equilibrium enrichment ratio, given by a sC T rC .e ` g
Ž . Ž .It should be furthermore noted here that although Eq. 10 is the same as Eq. 24 in form, they are much different in

Ž .nature. Eq. 24 depicts the equilibrium grain boundary segregation induced by the solute equilibration at the boundary,
Ž .whereas Eq. 10 describes the non-equilibrium grain boundary segregation induced by the complex diffusion to the

boundary.
The equilibrium segregation model described above is merely suitable for dilute binary alloys. For dilute ternary alloys,

the segregation model is described as follows. Two solutes 1 and 2, in a dilute ternary alloy, are considered here to compete
with each other for sites at grain boundaries. The maximum equilibrium grain boundary concentrations of the two solutes in

S1Ž . S2Ž .the ternary alloy at a given temperature T , C T and C T , in the approximation that all possible sites at grain` `

w xboundaries are available for segregation of solute atoms, are given respectively by 16

QS1S1C expg ž /kTS1C T s 25Ž . Ž .` Q QS1 S2S1 S21qC exp qC expg gž / ž /kT kT
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QS2S2C expg ž /kTS2C T s , 26Ž . Ž .` Q QS1 S2S1 S21qC exp qC expg gž / ž /kT kT

where CS1 and CS2 are the matrix concentrations of solutes 1 and 2, respectively; and Q and Q are the segregationg g S1 S2

energies of solutes 1 and 2, respectively.
w xThe kinetics of equilibrium grain boundary segregation are given by 15

S j S j 2 D t(C t yC 0 4D tŽ . Ž . iŽS j.bq b iŽS j.
s1yexp erfc js1,2, 27Ž .S j S j 2 2ž / a dC T yC 0 a d ž /Ž . Ž . eŽS j.` b eŽS j.

S jŽ . S jŽ .where C t is the equilibrium grain boundary segregation level of solute j after irradiation time t, C 0 is the boundarybq b

concentration of solute j at irradiation times0, i.e., the segregation level produced during the pre-irradiation heat-treatment
of the material. Similar to the binary case, this value is taken to be the matrix concentration of the solute in the calculations

Žunless specified. D is the diffusion coefficient of solute j in the matrix D is the irradiation-enhanced diffusioniŽS j. iŽS j.
T .coefficient D ) for substitutional solutes or the thermal diffusion coefficient D for interstitial solutes , d is theiŽS j. iŽS j.

S jŽ . S jthickness of the concentrated layer, and a sC T rC .eŽS j. ` g

Because of the fact that non-equilibrium segregation is a kinetic process and equilibrium segregation is a thermodynamic
process, it is assumed that these two processes are independent of each other. In calculations, the total segregation level is
taken to be the sum of the non-equilibrium and equilibrium segregation levels minus the matrix concentration of the solute.

2.3. Diffusion coefficients

In the preceding theoretical treatments, a number of diffusion coefficients are involved. In calculations, these diffusion
coefficients are given by the following relations:

E iv
miv ivD sD exp y 28aŽ .c oc ž /kT

E iI
miI iID sD exp y 28bŽ .c oc ž /kT

E v
m

D sD exp y 28cŽ .v ov ž /kT

E I
m

D sD exp y 28dŽ .I oI ž /kT

EiTD sD exp y 28eŽ .i oi ž /kT

Ce qC r
v v

) TD sD , 28fŽ .i i ež /Cv

where D iI, D iv, D , D , and DT are the diffusion coefficients of solute–interstitial complexes, solute–vacancy complexes,c c v I i
Ž .vacancies, interstitials, and solute atoms referring to thermal solute diffusion in the matrix, respectively; D ) is thei

irradiation-enhanced solute diffusion coefficient; D iv , D iI , D , D , and D are the pre-exponential constants for diffusionoc oc ov oI oi

of solute–vacancy complexes, solute–interstitial complexes, vacancies, interstitials, and solute atoms, respectively; E iv, E iI ,m m

E v , and E I are the migration energies for diffusion of solute–vacancy complexes, solute–interstitial complexes, vacancies,m m

and interstitials in the matrix, respectively; and E is the activation energy for thermal diffusion of solute atoms.i

2.4. Determination of interstitial solute–interstitial binding energies

As clearly shown above, the solute–interstitial binding energy is an important parameter. We have developed an
approach to evaluating this value for substitutional solute–interstitial complexes, e.g., boron or phosphorus–interstitial
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w xcomplexes in a-Fe 7 . Note that boron is here thought of as a substitutional solute in a-Fe because on the basis of diffusion
w x w xdata 17 , relative solubilities, atom diameter, and interstitial hole sizes 18 it appears that boron forms a substitutional solid

Ž .solution in a-Fe and an interstitial solid solution in g-Fe. Owing to an interstitial solute carbon involved in the alloys
concerned in this work, we now, on the basis of the approach, consider the case of interstitial solute–interstitial complexes.

w xInterstitial–impurity interaction studies 4,19,20 of dilute alloys have shown that self-interstitials can be trapped by
undersized substitutional solute atoms as mixed dumbbells composed of a solute atom and a matrix atom. It is assumed that
the interstitials can also be trapped by interstitial solute atoms as mixed dumbbells. In this case, the solute–interstitial

iI w xbinding energy, E , can be given by 4,7,21b

E iIsE I qE i yE iI , 29Ž .b f f f

I i iI Ž .where E , E , and E are the formation energies for the self-interstitial dumbbell , solute atom, and solute–interstitialf f f
Ž .complex mixed dumbbell , respectively. In the calculation of the solute–interstitial binding energy, the difference between

the substitutional solute–interstitial complex and the interstitial solute–interstitial complex is that they have different
calculation procedures for the solute atom formation energy.

w x IIn accordance with our previous work 7 , the self-interstitial formation energy, E , may approximately be given byf

14p 2IE s mr r yr q8p r S , 30Ž . Ž .f k o k o o3

where r is the matrix atom radius, r is the hole radius before the dumbbell formation, S is the energy per unit area of theo k o

interface between a matrix and a perfect lattice, and m is the shear modulus of the matrix. Here, S is assumed to be equal too
w xthe coherent twin boundary energy. The justification for this assumption may be seen in Ref. 7 . The value of the coherent

twin boundary energy is about 0.019 J my2 for Fe–Cr–Ni alloys. The value of r may approximately be given by thek
w xfollowing relations 7 .

For bcc crystals:

2 2'3a 3a
r s y . 31aŽ .(k 8 4

For fcc crystals:

2 2' '5a 2 a
r s y , 31bŽ .k 4 4

where a is the lattice constant of the matrix material.
w xAccording to Chapman and Faulkner 22 , the interstitial solute atom formation energy may be given by

8p 2iE s mr r yr qE , 32Ž . Ž .f s i s sm3

where E is the matrixrsolute interfacial energy, r is the solute atom radius, and r is the octahedral interstitial radius.sm i s

The value of r is 0.414r for fcc crystals. For bcc crystals, in view of the asymmetrical feature of the octahedral interstitials o
Žw x . Žw x w x .there are two interstitial radii R 001 orientation and R 110 and 110 orientations , where R s0.154r and1 2 1 o

Ž .R s0.633r . It is assumed here that for bcc crystals the effective value of r is equal to R q2 R r3, i.e., 0.473r .2 o s 1 2 o
ŽReplacing a matrix atom in the self-interstitial dumbbell by a solute atom creates an solute–interstitial complex mixed

. w xdumbbell . The solute–interstitial complex formation energy is given by Ref. 7 :

8p 8p2 2iI I 2E sE y mr r yr y4p r S q mr r yr qE . 33Ž . Ž . Ž .f f k o k o o k i k sm3 3

Hence the interstitial solute–interstitial binding energy may be given by

E iI sE IqE i yE iI
b f f f

8p . 34Ž .2 2 2 2s m r r yr qr r yr yr r yr q4p r SŽ . Ž . Ž .s i s k o k k i k o o3

w x 4 y2For ferritic steel matrices, a is 0.286 nm 23 and r is then obtained to be 0.0512 nm. Using ms8.1=10 MN m ,k

r s0.1241 nm, and r s0.077 nm, one can acquire the carbon-interstitial binding energy in the ferritic steel matrix aso iŽC.
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1.12 eV. The substitutional impurity–interstitial binding energy in the ferritic steel matrix has already been obtained as 0.57
w xeV for phosphorus–interstitial complexes and 1.11 eV for boron–interstitial complexes in our previous work 7 .

3. Results and discussion

The newly modified model described in Section 2 is now applied to the segregation of phosphorus in a-Fe and Fe–C–P
and Fe–B–P alloys subjected to neutron irradiation. In the predictions, the solute–interstitial and solute–vacancy complex
effects are treated separately so as to determine whether the solute–interstitial or solute–vacancy complexes play a dominant
role in neutron irradiation-induced non-equilibrium segregation. Data used in the theoretical calculations are listed in Table
1.

Fig. 1 illustrates the phosphorus diffusion coefficients in the a-Fe matrix as a function of temperature for thermal
diffusion and irradiation-enhanced diffusion, at a neutron dose rate of 10y8 dpa sy1, a grain size of 10 mm, and a

Ž . 16 y2dislocation density constant r of 10 m typical of that for quenched steels. Above ;3208C, the irradiation-enhancedo

diffusion coefficient is the same as the thermal diffusion coefficient. This is because, above ;3208C, the irradiation-created
vacancy concentration is relatively small compared with the thermal equilibrium vacancy concentration. Below ;3208C,
there are apparent irradiation-enhanced diffusion effects.

The results for phosphorus segregation in a-Fe, predicted by the model, are illustrated in Figs. 2–6. Fig. 2 shows the
Ž . Ž Ž .temperature dependencies of equilibrium C1 and non-equilibrium predicted by the solute–interstitial complex C2 and

Ž . .solute–vacancy complex C3 models phosphorus grain boundary segregation in a-Fe subjected to neutron irradiation with
r s1016 my2, Rs10 mm, neutron dose rates10y8 dpa sy1, and neutron doses1 dpa. Clearly, the equilibriumo

segregation of phosphorus is dominant at higher temperatures whereas the irradiation-induced non-equilibrium segregation is
dominant at lower temperatures. Fig. 2 also shows that the solute–interstitial complex effects are absolutely dominant in the
non-equilibrium segregation because the non-equilibrium segregation levels of phosphorus predicted by the solute–intersti-
tial complex model are much higher than those predicted by the solute–vacancy complex model. Moreover, for combined
equilibrium and solute–interstitial complex-induced non-equilibrium segregation of phosphorus, the non-equilibrium segre-
gation prevails below approximately 4008C and the equilibrium segregation dominates above this temperature.

Table 1
Data used in the theoretical calculations

Parameters Phosphorus Boron Carbon

A 1 1 1I

A 1 1v
v Ž . w x w xE eV 1.4 24 1.4 24f
I Ž .E eV 3.0 3.0 3.0f
iI Ž . w x w xE eV 0.57 7 1.11 7 1.12b
iv Ž . w x w xE eV 0.36 7 0.47 7 0.5b
Ž . w x w x w xE eV 2.68 3 2.69 25 0.83 25i

iI Ž . w x w x w xE eV 0.87 3 1.41 3 1.42 3m
iv Ž . w x w xE eV 1.60 26 1.71 26 1.33m
I Ž . w x w x w xE eV 0.3 27 0.3 27 0.3 27m
v Ž . w x w x w xE eV 1.24 8 1.24 8 1.24 8m

2 y1 y3 y7Ž . w x w x w xD m s 7.12=10 3 100 25 3.94=10 25oi
iv 2 y1 y5 y5 y7Ž . w x w xD m s 1.7=10 28 1.7=10 28 3.94=10oc
iI 2 y1 y7 y7 y7Ž . w x w x w xD m s 8=10 11 8=10 11 8=10 11oc

2 y1 y6 y6 y6Ž . w x w x w xD m s 5=10 11 5=10 11 5=10 11oI
2 y1 y5 y5 y5Ž . w x w x w xD m s 5=10 29 5=10 29 5=10 29ov

w x w x w xZ 1.1 30 1.1 30 1.1 30I
Ž . w x w x w xE eV 0.1 31 0.1 31 0.1 31d
Ž .C at.% 0.072 0.0010 0.0010g

w x w x w xB 0.01 32,33 0.01 32,33 0.01 32,33
y1 0 y10 y10Ž .b m 1.43=10 1.43=10 1.43=10

w x w x w xb 0.775 34 0.775 34 0.775 34
Ž . w x w x w xQ eV 0.54 35 1.038 36,37 0.829 38,39

y9 y9 y9Ž .d m 1=10 1=10 1=10
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Ž .Fig. 1. The temperature dependence of phosphorus diffusion coefficient in the a-Fe matrix for thermal diffusion D1 and irradiation-en-
Ž . y8 y1 Ž . 16 y2hanced diffusion D2 , at a dose rate of 10 dpa s , a dislocation density constant r of 10 m , and a grain size of 10 mm.o

Ž . Ž Ž .Fig. 2. The temperature dependence of equilibrium C1 and non-equilibrium predicted by the solute–interstitial complex C2 and
Ž . . Ž 16solute–vacancy complex C3 models phosphorus grain boundary segregation degree in a-Fe subjected to neutron irradiation r s10o

y2 y8 y1 .m , Rs10 mm, dose rates10 dpa s , doses1 dpa .

Fig. 3. The dose dependence of combined equilibrium and non-equilibrium phosphorus grain boundary segregation degree in a-Fe at 2508C
Ž y1 . Ž 16 y2 .for different dose rates dpa s , predicted by the solute–interstitial complex model r s10 m and Rs10 mm .o
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Fig. 4. The temperature dependence of combined equilibrium and non-equilibrium phosphorus grain boundary segregation degree in
Ž y1 . Ž 16 y2neutron-irradiated a-Fe at different dose rates dpa s , predicted by the solute–interstitial complex model r s10 m , Rs10 mm,o

.and doses1 dpa .

All the results shown in Figs. 3–8 are predicted by the solute–interstitial complex model. The segregation degree of
phosphorus in a-Fe at 2508C is represented in Fig. 3 as a function of irradiation dose for different dose rates. Clearly, the
segregation level increases with increasing irradiation dose until the steady-state segregation is achieved. The dose level
required to reach the steady-state decreases with decreasing dose rate, because at the same dose level, the lower the dose

Ž . Ž y2 . Ž . Ž .Fig. 5. The effects of a dislocation density constant r , m and b grain size R on the combined equilibrium and non-equilibriumo
Žphosphorus grain boundary segregation degree in neutron-irradiated a-Fe, predicted by the solute–interstitial complex model dose

y8 y1 Ž . 16 y2 Ž ..rates10 dpa s and doses1 dpa; Rs10 mm for a and r s10 m for b .o
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Ž . Ž .Fig. 6. a The long-range point-defect recombination term F h as a function of irradiation temperature for different dislocation density
Ž . Ž . Ž .constants. b The temperature dependences of non-equilibrium C1 and C2 and equilibrium C3 and C4 phosphorus grain boundary

Ž . Ž .segregation in neutron irradiated a-Fe, predicted by the solute–interstitial complex model with C1 and C3 and without C2 and C4
11 y2 Žconsideration of the long-range point-defect recombination effect at a dislocation density constant of 10 m Rs10 mm, dose

y8 y1 .rates10 dpa s , doses1 dpa .

rate, the longer is the time for segregation. Fig. 4 illustrates the effects of neutron dose rate in the range of 10y6 to 10y12

dpa sy1 on the combined segregation. Evidently, the phosphorus segregation peaks all shift to lower temperatures with
decreasing neutron dose rate. The influences of dislocation density or grain size on the combined segregation are shown in
Fig. 5a and b, respectively. Clearly, the dislocation density and the grain size both have an apparent effect on the phosphorus

w xsegregation during neutron irradiation. As discussed in Ref. 3 , the influence of dislocation density is reflected in the
kinetics of equilibrium segregation and in the quasi-thermodynamics of irradiation-induced non-equilibrium segregation, and
that of grain size is brought about mainly by its influence on the critical time t .c

In order to reveal the effect of the long-range recombination of freely migrating point-defects on segregation, we have, as
Ž .illustrated in Fig. 6a, calculated the long-range recombination term F h as a function of irradiation temperature for

different dislocation density constants which characterise the sink strength. Clearly, there is no apparent long-range
16 y2 Ž .point-defect recombination effect for a dislocation density constant of 10 m see Fig. 6a . This is because, as discussed

w xin Ref. 40 , the sink strength is so strong within the grain that the long-range recombination effect of freely migrating
point-defects is negligible. When the dislocation density constant is reduced to 1011 my2, there emerges a noticeable

Ž .long-range point-defect recombination effect see Fig. 6a . Fig. 6b represents the temperature dependences of irradiation-in-
Ž . Ž .duced non-equilibrium segregation C1 and C2 and equilibrium segregation C3 and C4 of phosphorus in neutron-irradia-

Ž . Ž .ted a-Fe, with C1 and C3 and without C2 and C4 consideration of the long-range point-defect recombination effect at a
dislocation density constant of 1011 my2. Clearly, the long-range point-defect recombination exerts some effect on both the
non-equilibrium segregation and the equilibrium segregation. For the non-equilibrium segregation, the segregation level

Ž . Ž .including the F h effect is somewhat higher than that without considering the F h effect at low temperatures, but it is
slightly lower at higher temperatures. This phenomenon may be explained by the following considerations. On the one hand,

Ž .the irradiation-enhanced phosphorus diffusivity decreases with decreasing F h , leading to an increase in the critical time
Ž Ž . Ž . Ž ..see Eqs. 5 , 14 and 21 and thus an increase in the non-equilibrium segregation. On the other hand, the maximum
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Ž . ŽFig. 7. The grain boundary segregation degree during neutron irradiation of a phosphorus in Fe: 0.072 at.% P–B 0, 1, 10, and 100 appm
. Ž . Ž .B alloy, and of b boron in Fe: 0.0010 at.% B–P 0 and 720 appm P alloy as a function of irradiation temperature, predicted by the site

Ž 16 y2 y8 y1 .competition model r s10 m , Rs10 mm, dose rates10 dpa s , doses1 dpa .o

Ž . Ž Ž ..non-equilibrium segregation decreases with decreasing F h see Eq. 9 . In other words, non-equilibrium segregation is
affected in opposite ways, depending on whether the critical time is exceeded or not. In the present example, low

Ž .temperatures cause such low irradiation-enhanced diffusion because of the low F h that the critical time becomes much
Ž .greater as compared to the situation where we have not included the F h effect. The overall non-equilibrium segregation is,

therefore, somewhat enhanced. At higher temperatures, the maximum non-equilibrium segregation reduction effect is
Ž .dominating although the critical time is somewhat increased. For the equilibrium segregation, F h influences the predicted

segregation predominantly in the low temperature range because of the decreased irradiation-enhanced phosphorus
diffusivity.

Grain boundary segregation of phosphorus during neutron irradiation in Fe–B–P alloy, predicted by the ternary site
competition model for different free boron concentrations, is shown in Fig. 7a as a function of irradiation temperature.
Because of competition for sites at grain boundaries between boron and phosphorus, phosphorus segregation is considerably
suppressed, especially at lower temperatures. Boron segregation dominates during neutron irradiation and is slightly affected

Ž .by the site competition of phosphorus with boron in the high-temperature range only see Fig. 7b .
Grain boundary segregation of phosphorus during neutron irradiation in Fe–C–P alloy, predicted by the site competition

model for different free carbon concentrations, is illustrated in Fig. 8a as a function of irradiation temperature. Akin to the
solute segregation in Fe–B–P alloy, phosphorus segregation is suppressed, notably at lower temperatures, due to the
competition of carbon with phosphorus for segregation sites. However, the extent of the suppression in this alloy is less than
that in Fe–B–P alloy. Carbon segregation is dominant in this alloy and is somewhat influenced by the site competition of

Ž .phosphorus with carbon in the high-temperature range see Fig. 8b .
Note that there are some differences between the temperature dependences of carbon and boron grain boundary

segregation. As illustrated in Fig. 7b and Fig. 8b, the segregation peak temperature of carbon in Fe–C–P alloy, as compared
to that in Fe–B–P alloy, shifts to lower temperatures and, below 5008C, the segregation level of carbon is much higher than
that of boron. This is because the activation energy for carbon diffusion is much lower than that for boron diffusion in
ferritic steels.
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Ž . ŽFig. 8. The grain boundary segregation degree during neutron irradiation of a phosphorus in Fe: 0.072 at.% P–C 0, 10, 100, and 1000
. Ž . Ž .appm C alloy, and of b carbon in Fe: 0.0010 at.% C–P 0 and 720 appm P alloy as a function of irradiation temperature, predicted by the

Ž 16 y2 y8 y1 .site competition model r s10 m , Rs10 mm, dose rates10 dpa s , doses1 dpa .o

It may be concluded that since the ability to compete for segregation sites increases considerably on going from
phosphorus to carbon to boron, grain boundary segregation of phosphorus during neutron irradiation in ferritic steels may be
restrained, especially at lower temperatures, by minor boron or even carbon additions. Dissolved free carbon may restrain
phosphorus segregation in ferritic steels. However, dissolved carbon content, in reality, is extremely low in commercial
ferritic structural steels. Moreover, the competition ability of carbon is less than that of boron. Consequently, boron is more
effective at suppressing phosphorus segregation when compared to carbon.

Until the present time, there have been quite limited experimental results on the phosphorus segregation during neutron
w xirradiation in dilute binary alloys. Studies by Kameda and Bevolo 41 demonstrate that the grain boundary segregation level

of phosphorus in a dilute Fe–P binary alloy is quite high and is much higher than that in a dilute Fe–C–P ternary alloy when
22 y2 Ž w x.they are both subjected to neutron irradiation to 9.4=10 n m neutron energy)0.1 MeV; ;0.005 dpa 8,42 with a

y17 y2 y1 Ž y8 y1 w x.neutron flux of 2.1=10 n m s neutron energy)0.1 MeV; ;1=10 dpa s 8,42 at an irradiation
temperature of 3958C. A 0.0073-wt% B-containing 10% Cr martensitic steel subjected to proton irradiation to 0.09 dpa with

y7 y1 Ža dose rate of 9.4=10 dpa s at 2508C exhibits that there is no phosphorus detected by FEGSTEM field emission gun
. 1scanning transmission electron microscopy microanalysis at grain boundaries. Beere examined a series of C–Mn

submerged-arc weld metals subjected to neutron irradiation in the range of 190–4008C. 2 His results demonstrate that the
grain boundary segregation of phosphorus decreases with decreasing irradiation temperature. An investigation by Little et al.
w x43 on the microchemistry of neutron-irradiated 12% CrMoVNb martensitic steel showed an apparent phosphorus

w xsegregation to lath boundaries as the material was irradiated to 46 dpa at 4658C. A Loughborough study 44 was made in a
0.14-at.% P-doped 2.25 Cr1Mo steel, water-quenched, and irradiated to a neutron dose of ;0.042 dpa at a neutron dose rate

y8 y1 Ž . Ž .of ;1.05=10 dpa s neutron energy)1 MeV at temperatures around 2708C see curve C1 in Fig. 9 in a thermal,

1 P. Marmy, EPFL-CRPP, Fusion Technology, CH-5232 Villigen PSI, Switzerland, private communication, 1996.
2 W. Beere, Berkeley Centre, Magnox Electric, Berkeley, Gloucestershire, UK, private communication, 1996.
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w x Ž 3.Fig. 9. Irradiation temperature as a function of irradiation time used in Ref. 44 .

Žlight–water research reactor, named SAPHIR, operated by the Swiss Federal Institute for Reactor Research the quenching-
w x.induced phosphorus grain boundary segregation is ;3.8 at.% 26 . FEGSTEM microanalysis of the grain boundary

Ždemonstrates that there is only ;0.2 at.% P grain boundary segregation during irradiation the total segregation is ;4
.at.% . However, the same material subjected to neutron irradiation to a dose of ;0.13 dpa with a neutron dose rate of

y8 y1 Ž . Ž .;1.75=10 dpa s neutron energy)1 MeV at temperatures around 4008C see curve C2 in Fig. 9 exhibits ;3.2
Ž . 3at.% P grain boundary segregation during irradiation the total segregation is ;7 at.% .

A comparison of the predicted results from the ternary site competition model with some experimental values from Ref.
w x Ž 3.44 on the phosphorus segregation is indicated in Fig. 10 . The predictions are made for different free carbon contents

Ž . y8 y1and with the following irradiation conditions: a neutron dose rates1.75=10 dpa s and neutron doses0.13 dpa; and
Ž . y8 y1b neutron dose rates1.05=10 dpa s and neutron doses0.042 dpa. The experimental data points for the 0.14 at.%
P-doped 2.25 Cr1Mo steel described above are plotted at 400 and 2708C, respectively, because, as shown in Fig. 9, the
appropriate irradiation temperatures for comparison between the predicted and experimental results are about 400 and 2708C,
respectively. Because of competition for sites at grain boundaries between carbon and phosphorus, phosphorus segregation is
considerably suppressed, especially at lower temperatures. Also, it is clear that there is quite a reasonable fit between the
predictions and the observations when an appropriate free carbon content is employed in the calculations. For irradiation
around 2708C, when the free carbon concentration is about 0.1 at.%, the predicted result is reasonably consistent with the
experimental value. This free carbon concentration is close to the bulk concentration of carbon of 0.4 at.% in the
experimental steel. For irradiation around 4008C, however, the free carbon concentration, at which the predicted result is in
reasonable agreement with the experimental value, is about 0.01 at.%. This carbon concentration is far away from the bulk

Ž .concentration of carbon in the experimental steel 0.4 at.% . These phenomena are reasonable because when the steel is aged
around 2708C, only a very small amount of carbide precipitation may occur, leading to the free carbon content to be close to
the bulk content, but when the steel is aged around 4008C, a large amount of carbide precipitation may take place, leading to

w xa free carbon content well below the bulk content. A recent experimental study by Beere 45 on the correlation between
phosphorus and carbon segregation has indicated that the phosphorus segregation decreases with increasing carbon
segregation. It should be recognised that the steel is not a pure dilute ternary alloy. However, bearing in mind many thermal

w xgrain boundary segregation studies confirming the site competition effect between phosphorus and carbon or boron 46–51 ,
we have assumed here that, except for phosphorus and carbon or boron, the steel matrix may be regarded as the host
component in the dilute ternary alloy for modelling simplicity.

w x w xUsing both the Murphy–Perks rate theory model 52 and the McLean 15 equilibrium segregation model, Druce et al.
w x53 predicted grain boundary segregation of phosphorus in ferritic C–Mn submerged-arc weld metal subjected to neutron

w xirradiation. Comparison of the present results with those calculated by Druce et al. 53 is represented in Fig. 11. Clearly,
each of these two predictions forecasts the trends of segregation in the same way. Site competition and microstructural

w xeffects are not considered however in the rate theory model 53 .

3 R.G. Faulkner, S.-H. Song, P.E.J. Flewitt, Loughborough University, Leicestershire, UK, unpublished research, 1996.
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Fig. 10. The grain boundary segregation degree of phosphorus during neutron irradiation in Fe–C-0.14 at.% P alloys as a function of
Ž . y8irradiation temperature, predicted for different free carbon concentrations and with irradiation conditions: a dose rates1.75=10 dpa

y1 Ž . y8 y1s and doses0.13 dpa; and b dose rates1.05=10 dpa s and doses0.042 dpa. The experimental mean value is plotted for
Ž 15 y2 .comparison grain sizes10 mm and dislocation density constants10 m , and pre-irradiation boundary concentrations3.8 at.% .

w xIn order to compare with the Johnson–Lam rate theory model 11 , we have predicted, using the interstitial–solute
complex mechanism, irradiation-induced non-equilibrium zinc segregation at the thin foil surface of an Ag–Zn alloy and

w xcompared, as illustrated in Fig. 12, with those predicted by Johnson and Lam 11 . It may be seen evidently that these two
predictions are consistent with each other in the trend of segregation.

Fig. 11. The temperature dependence of combined equilibrium and non-equilibrium phosphorus grain boundary segregation degree for
w xdifferent free carbon concentrations in Fe–C–P alloy with the Druce results 53 for ferritic C–Mn submerged-arc weld metal plotted for

Ž 15 y2 y12 y1comparison r s10 m , Rs10 mm, dose rates5=10 dpa s , doses0.005 dpa, phosphorus matrix concentrations0.072 at.%,o
.pre-irradiation phosphorus boundary concentrations4.5 at.% .
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Ž .Fig. 12. The temperature dependence of irradiation-induced non-equilibrium zinc segregation at the thin foil surface of an Ag–Zn alloy C1
w x Ž . Ž 15 y2with the Johnson–Lam results 11 plotted for comparison C2 parameters used in the calculation: Rs0.1 mm, r s10 m , doseo

rates10y6 dpa sy1 , irradiation times4 days, E s1.53 eV, D s4.6=10y5 m2 sy1 , E I s0.1 eV, D s5=10y6 m2 sy1 , E v s0.84i oi m oI m

eV, D s5=10y5 m2 sy1 , E iI s0.3 eV, D s8=10y7 m2 sy1 E iI s0.2 eV, E v s1.0 eV, bs2.89=10y10 m; other data used areov m oc b f
Ž ..listed in Table 1 column 2 .

w xAs stated earlier, a steady-state analytical solution of the Johnson–Lam rate theory model 11 has been derived by
w xMartin 10 . This solution may be expressed as

tyt r ea a C qCv v v v
C sC 1q y1 , 35Ž .b g ež / ž / ž /a a CI I v

where C is the steady-state solute concentration at the sink; C is the solute concentration in the matrix; a and a are theb g I v

Ž . Ž .Fig. 13. a The segregation factor, t , as a function of irradiation temperature. b The grain boundary segregation degree of phosphorus in
neutron-irradiated a-Fe, predicted here by the steady-state analytical solution of the Johnson–Lam rate theory model.
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Ž . Ž .positive functions of the jump frequencies of the respective defects in the vicinity of the solute; ts b qb r a qa ,I v I v

termed here the segregation factor, where b and b are the coupling parameters of the solute flux with the interstitial andI v

vacancy fluxes, respectively. Determination of the parameters a , a , b , and b is given in Appendix A.I v I v
Ž .It may be seen from Eq. 35 that the segregation factor, t , determines enrichment or depletion of solute atoms at sinks.

The temperature dependence of segregation factor t is illustrated in Fig. 13a for phosphorus in a-Fe. Clearly, t is negative
over the temperature range concerned. This means that phosphorus is depleted at sinks, especially at lower temperatures
because of larger supersaturation degrees of point-defects, which is shown in Fig. 13b. These predicted results appear to be

Ž . w xunreasonable because the present predictions see Figs. 2–6 and many experimental studies 41,43–45,53,54 have
Ž 2,3.demonstrated that there is apparent phosphorus grain boundary segregation under neutron irradiation in ferritic steels .

The reason for this phenomenon may be that the data used in the calculation are not quite appropriate to this steady-state
analytical solution.

4. Summary

An earlier model describing solute segregation during neutron irradiation in dilute binary alloys is improved in terms of
the irradiation-enhanced solute diffusion theory and the evaluation of the long-range recombination of freely migrating
point-defects, and expanded to make predictions of solute segregation in dilute ternary alloys through consideration of
solute–solute competition for segregation sites. In the absence of solute–interstitial interactions, solute segregation to sinks
may occur via solute–vacancy complexes if the solute–vacancy binding energy is high enough. However, it should be
remembered that the migration of solute–vacancy complexes is quite slow as compared to that of solute–interstitial
complexes. Predictions of phosphorus grain boundary segregation in neutron irradiated a-Fe and Fe–B–P and Fe–C–P
alloys have been made by means of the newly modified model, assuming the presence of each defect type separately in order
to clearly indicate whether the solute–interstitial complex effect or the solute–vacancy complex effect dominates during
neutron irradiation-induced segregation. The predicted results clearly show that it is reasonable to consider the phosphorus–
interstitial complex effect to be dominant during phosphorus segregation caused by neutron irradiation in ferritic steels. The
site competition between phosphorus and boron or carbon may need to be taken into consideration for phosphorus
segregation in the steels because both boron and carbon are predicted to suppress dramatically the segregation of
phosphorus. Comparison of the model predictions with existing experimental results demonstrates that there is a reasonable
agreement between the predictions and the observations.

5. List of symbols

a Lattice constant of the matrix material
Ž .A Constant related to the vibrational entropy of atoms around the point-defect vacancy, v, or interstitial, Ip

b Jump distance of interstitials
B Dose rate correction factor, i.e., the fraction of freely migrating point-defects escaping from the cascade

Ž .C t Equilibrium segregation level as a function of irradiation time t at a given temperaturebq
Ž .C t Irradiation-induced non-equilibrium segregation level as a function of irradiation time t at a givenbr

temperature
C m Maximum concentration of irradiation-induced segregation at a given temperaturebr

C Solute concentration in the matrixg

C r Irradiation-generated interstitial concentrationI
r Ž .C Concentration of irradiation-generated point-defects vacancies or interstitialsp

Ce Equilibrium vacancy concentrationv

C r Irradiation-generated vacancy concentrationv
Ž .C T Maximum equilibrium segregation level at temperature T`

d Grain boundary enriched thickness
ip Ž ivD Diffusion coefficient of solute–point-defect complexes in the matrix D for solute–vacancy complexc c

iI .diffusion and D for solute–interstitial complex diffusionc

DT Thermal diffusion coefficient of solute atoms in the matrixi

D) Irradiation-enhanced diffusion coefficient of solute atoms in the matrixi
Ž .D Diffusion coefficient of point-defects in the matrix D for vacancies and D for interstitialsp v I



( )R.G. Faulkner et al.rJournal of Nuclear Materials 255 1998 189–209 207

ip Ž iI ivD Pre-exponential constant for complex diffusion D for solute–interstitial complex diffusion and D foroc oc oc
.solute–vacancy complex diffusion

D Pre-exponential constant for diffusion of solute atomsoi
ŽD Pre-exponential constant for diffusion of point-defects D for interstitials and D for vacanciesop oI ov

ip Ž iI ivE Solute–point-defect binding energy E for the solute–interstitial complex and E for the solute–vacancyb b b
.complex

E Activation energy for dislocation recoveryd
p Ž I v .E Point-defect formation energy E for the interstitial and E for the vacancyf f f

E Activation energy for solute diffusion in the matrixi
ip Ž iI ivE Migration energy of complexes E for solute–interstitial complexes and E for solute–vacancym m m

.complexes
p Ž I v .E Migration energy of point-defects E for interstitials and E for vacanciesm m m

G Point-defect production rate, i.e., neutron dose rate
k Boltzmann’s constant

2 Ž 2 2 .k Sink strength for the point-defect k for vacancies and k for interstitialsdp dv dI

Q Equilibrium segregation energy
r Solute atom radiusi

r Matrix atom radiuso

r Octahedral interstitial radiuss

R Grain size
t Time
t Critical timec

T Absolute temperature
x Distance
Z Bias parameter defining the preferential interaction between interstitials and dislocations compared withI

that between vacancies and dislocations
a Maximum non-equilibrium enrichment ration

a Maximum equilibrium enrichment ratioe

b Constant showing the vibrational entropy of the grain boundary region
d Numerical constant, also known as the critical time constant
l Long-range recombination coefficient of freely migrating point-defects
r Dislocation density
r Dislocation density constanto
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Appendix A. Determination of parameters a , a , b , and bI v I v

Ž . w x w xWe now determine the parameters a , a , b , and b in Eq. 35 . According to Martin 10 and Barbu and Lidiard 55 ,I v I v

a , a , b , and b may be given for bcc crystals byI v I v

1 E iI
b

a s exp l A1Ž .I BB2 I ž /kT3a w0

7wvwv
2 4

a s A2Ž .v v v vw 2w q7wŽ .0 2 3
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1 E iI
b

b s exp l ql A3Ž .Ž .I AB BB2 I ž /kT3a w0

9wvwv
2 4

b sy A4Ž .v v v vw 2w q7wŽ .0 2 3

in which

12 a2 w I w I
1 2

l s A5Ž .AB I I I5w q3w qw1 2 R

w I q3w I qw I
1 2 R2 Il s3a w , A6Ž .BB 1 I I Iž /5w q3w qw1 2 R

iI I Ž .where a is the lattice constant of the matrix material; E is the solute–interstitial binding energy; w ns0,1,2, and R isb n
Žthe jump frequency of interstitials subscript 0 denotes the jump leading to migration of the self-interstitial; subscript 1,

Ž .leading to migration of the mixed dumbbell solute–interstitial complex ; subscript 2, leading to dissociation of the mixed
dumbbell; and subscript R, leading to rotation of the interstitial dumbbell without a migration step onto a different lattice

. v Ž . Žsite ; w ns0, 2, 3, and 4 is the jump frequency of vacancies subscript 0 denotes the jump leading to migration ofn

vacancies; subscript 2, leading to solute–vacancy interchange; subscript 3, leading to dissociation of the solute–vacancy
.complex; subscript 4, leading to formation of the solute–vacancy complex .

w xThe various jump frequencies of interstitials and vacancies are given by 52

E I
nI 12w s5=10 exp y , ns0, 1, 2, and R A7Ž .n ž /kT

E v
nv 13w s5=10 exp y , ns0, 2, 3, and 4, A8Ž .n ž /kT

I I I iI I I iI I w x v v v v vwhere E sE ; E sE ; E sE qE ; E s0.75 eV 52 ; E sE ; E ssolute–vacancy interchange energy; E sEo M 1 m 2 m b R o m 2 3 m
iv v v Ž . I iI iI vqE and E sE ; assumed here that there is no interaction between vacancies and matrix atoms . E , E , E , E , andb 4 m m m b m

E iv are given in Table 1. In the calculations, the solute–vacancy interchange energy is acquired by the difference betweenb

the solute diffusion activation energy and the vacancy formation energy.
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